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Introduction
The unsteady tri-periodic laminar solutions of the Navier-Stokes equations
described in Antuono (2020) are considered as possible benchmarks. These
represent fully three-dimensional flows, since all the velocity components depend
non-trivially on all three coordinate directions, and can be regarded as an
extension in three-dimensions of the bi-periodic vortex solution of Taylor (1923).
For low and moderate Reynolds numbers these solutions can be used for
benchmarking numerical codes while, for larger Reynolds numbers, they may
be adopted to study the onset of flow instabilities and the eventual transition to
turbulence.

Flow phenomena

• laminar viscous flow,

• fully three-dimensional,

• tri-periodic,

• transition to turbulence for high Reynolds numbers.

Geometry
The geometry is a three-dimensional cube with periodic boundary conditions
(namely, a three-dimensional Torus). Specifically, the domain is D = [0,L]3

where L denotes the length of one side of the cube.

Boundary conditions
Periodic conditions are assigned on all facets of the cube.



Initial conditions

The initial conditions are obtained by imposing t = 0 in the analytic solutions for
the fluid velocity, u = (u, v,w). At each time instant, the pressure field can be
obtained straightforwardly from the solution for u through the relation below:

p = p0 – ρ0
‖u‖2
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,

where p0 represents an arbitrary constant and ρ0 is the reference density.
The analytic solutions for the velocity field are classified according to the sign
of the helicity (namely, the scalar product between velocity and vorticity). In
particular we use the subscript ‘1’ for the solution with positive helicity (namely
u·ω > 0) and the subscript ‘2’ for the solution with negative helicity (i.e. u·ω < 0).
We have:
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where k = 2π/L is the wave number, L is the length of one side of the cube, ν is
the kinematic viscosity and U0 is the reference velocity. The Reynolds number is
defined as Re = U0L/ν.
The analytic solutions are renormalized so that the average kinetic energy per unit
of mass satisfies the following relation:
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and E (0) = U2
0/2. The maximum absolute velocity is attained at the initial time

(for example, at the origin) and corresponds to Umax =
√

8/3 U0. The vorticity
field is obtained through the solution of the velocity field as follows:

ω1,2 = ±
√

3 k u1,2 .

Both solutions have eight stagnation points at the positions:

( xl, ym, zn ) =
L
4

(1, 1, 1) +
L
2

( l, m, n ) where l,m, n = 0, 1.



Discretization

The initial discretization may be a uniform Cartesian lattice or, for SPH solvers,
any regular particle distribution. In Antuono (2020) the numerical outputs were
obtained through a Finite Volume solver with 323 nodes displaced on a regular
Cartesian grid. For Re = 50 the numerical solution was in good agreement
with the analytical solution while for larger values (e.g. Re = 1000) the onset
of instabilities was observed.

Results specification

Comparisons with the analytic solutions described in ”Initial conditions”. In
particular:

• time decay of the average kinetic energy per unit of mass E for different
Reynolds numbers.

• convergence analysis on E for a fixed Reynolds number,

• prediction of particle trajectories,

• contour maps of the velocity and pressure/vorticity fields.

See figures 1, 2 and 3 as possible examples.

Results format

Results are in the form of analytic expressions (see the section ”Initial conditions”)

Benchmark results

Numerical solutions obtained through a Finite-Volume solver are available in
Antuono (2020).
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Figure 1: Solution at t∗ = 0. Left: contours of the velocity component u∗1 (slices
at x∗ = 0.86, y∗ = 0.86 and z∗ = 0.08). Right: streamlines close to the stagnation
points (1/4, 1/4, 1/4) and (3/4, 3/4, 3/4). Here the planes are orthogonal to the
direction (1, 1, 1) and display the contour of the kinetic energy ‖u∗1‖2/2.
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Figure 2: Contours of the pressure fields p∗1 (left) and p∗2 (right) at t∗ = 0 (slices
at x∗ = 0.86, y∗ = 0.86 and z∗ = 0.08) and iso-surfaces at p∗1 = −0.02 (left) and
p∗2 = −0.02 (right).
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Figure 3: Time history of the averaged kinetic energy per unit of mass for Re = 50.
Comparisons between the analytic solutions and the numerical outputs obtained
with a FV solver. The solution of the family ‘1’ has been used to initialize the
computations.


